One-Step Biallelic and Scarless Correction of a β-Thalassemia Mutation in Patient-Specific iPSCs without Drug Selection

نویسندگان

  • Yali Liu
  • Yi Yang
  • Xiangjin Kang
  • Bin Lin
  • Qian Yu
  • Bing Song
  • Ge Gao
  • Yaoyong Chen
  • Xiaofang Sun
  • Xiaoping Li
  • Lei Bu
  • Yong Fan
چکیده

Monogenic disorders (MGDs), which are caused by single gene mutations, have a serious effect on human health. Among these, β-thalassemia (β-thal) represents one of the most common hereditary hematological diseases caused by mutations in the human hemoglobin β (HBB) gene. The technologies of induced pluripotent stem cells (iPSCs) and genetic correction provide insights into the treatments for MGDs, including β-thal. However, traditional approaches for correcting mutations have a low efficiency and leave a residual footprint, which leads to some safety concerns in clinical applications. As a proof of concept, we utilized single-strand oligodeoxynucleotides (ssODNs), high-fidelity CRISPR/Cas9 nuclease, and small molecules to achieve a seamless correction of the β-41/42 (TCTT) deletion mutation in β thalassemia patient-specific iPSCs with remarkable efficiency. Additionally, off-target analysis and whole-exome sequencing results revealed that corrected cells exhibited a minimal mutational load and no off-target mutagenesis. When differentiated into hematopoietic progenitor cells (HPCs) and then further to erythroblasts, the genetically corrected cells expressed normal β-globin transcripts. Our studies provide the most efficient and safe approach for the genetic correction of the β-41/42 (TCTT) deletion in iPSCs for further potential cell therapy of β-thal, which represents a potential therapeutic avenue for the gene correction of MGD-associated mutants in patient-specific iPSCs.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Site-specific gene correction of a point mutation in human iPS cells derived from an adult patient with sickle cell disease.

Human induced pluripotent stem cells (iPSCs) bearing monogenic mutations have great potential for modeling disease phenotypes, screening candidate drugs, and cell replacement therapy provided the underlying disease-causing mutation can be corrected. Here, we report a homologous recombination-based approach to precisely correct the sickle cell disease (SCD) mutation in patient-derived iPSCs with...

متن کامل

The Combination of CRISPR/Cas9 and iPSC Technologies in the Gene Therapy of Human β-thalassemia in Mice

β-thalassemia results from point mutations or small deletions in the β-globin (HBB) gene that ultimately cause anemia. The generation of induced pluripotent stem cells (iPSCs) from the somatic cells of patients in combination with subsequent homologous recombination-based gene correction provides new approaches to cure this disease. CRISPR/Cas9 is a genome editing tool that is creating a buzz i...

متن کامل

Enhancement of β‐Globin Gene Expression in Thalassemic IVS2‐654 Induced Pluripotent Stem Cell‐Derived Erythroid Cells by Modified U7 snRNA

The therapeutic use of patient-specific induced pluripotent stem cells (iPSCs) is emerging as a potential treatment of β-thalassemia. Ideally, patient-specific iPSCs would be genetically corrected by various approaches to treat β-thalassemia including lentiviral gene transfer, lentivirus-delivered shRNA, and gene editing. These corrected iPSCs would be subsequently differentiated into hematopoi...

متن کامل

Both TALENs and CRISPR/Cas9 directly target the HBB IVS2–654 (C > T) mutation in β-thalassemia-derived iPSCs

β-Thalassemia is one of the most common genetic blood diseases and is caused by either point mutations or deletions in the β-globin (HBB) gene. The generation of patient-specific induced pluripotent stem cells (iPSCs) and subsequent correction of the disease-causing mutations may be a potential therapeutic strategy for this disease. Due to the low efficiency of typical homologous recombination,...

متن کامل

Thalassemic Mutations in Southern Iran

Background: Approximately 180 mutations have been described in β-thalassemia worldwide with specific spectrum in each ethnic population. This study determines the spectrum and the frequency of β-thalassemia mutations in patients with β-thalassemia trait and sickle cell-β-thalassemia. Methods: Fifteen compound heterozygous sickle cell thalassemia (SCT) and 23 β-thalassemia trait patients were st...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017